
II

END

L60I. 2
I- Ig

IlllN I 1.8

MICROCOPY RESOLUTION TEST CHART

%AT, NAH !t A, i TAN[,AHL , - A

MA.-)')ACI It
1, A B () R AtO R Y FO R I N F I' H 11: 1
CO M 131 'FHZ S (A F N CI

A SINWIATION FiNVIRONMENT
-4 -4'OR SCOI IE'MA

OTIC
E L,-,- E

MAR 2 6 10

M 7=1- a"
F.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for Public Release;distribution
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-386 DARPA/DOD N00014-80-C-0622

6a. NAME OF PERFORMING ORGANIZATION f6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

MIT Lab for Computer Science Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

DARPA/DOD I , -

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK R

Arlington, VA 22217 ELEMENT NO. NO NO A CC

11. TITLE (Include Security Classification) '-

A Simulation Environment for Schema

12. PERSONAL AUTHOR(S)

St. Pierre, Margaret Ann

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical I FROM TO 1986 December .63
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP CAD, VLSI, simulation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In present day circuit design, many independent simulation tools are available for analyzing

-ircuits at various levels of detail. This thesis presents a Cramework to tie these tools

into the Simulation Environment in Schema, an integrated CAD system. The framework easily

incorporates additional simulators, serves as a foundation upon which to build new analysis

tools, and provides the ability for mixed-mode simulation. The Simulation Environment is

composed of common data representations, a Generic Simulator, and a single user interface.

A common representation for topological, model, and waveform data objects facilitates a

uniform interface to the user and to all CAD tools. The Generic Simulator coordinates the

flow of data objects between each simulator and the user or analysis tool.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

M] UNCLASSIFIED/UNLIMITED 0 SAME AS RPT, [3 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPONE (biud Area Code) I22c OFFICE SYMBOL

Judy Little (617) 523-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

4LS. sin mine - Omd I-.4W

lncl] sified

A Simulation Environment for Schema

by

Margaret Ann St. Pierre

Aaccsson For

NTIS GRA&I

DTIC TAB
Unannounced

Just Icat ion

By
Distribut ior/

Ava-i 1

Dist I

Copyright (0 1-186 Massachusetts Institute of Technology

Support for this research was provided by the Defense Advanced Rese'tch Projects Ajency of
t:c Departierint o[Defense under Contract No. N00014-80-C-0622.

DTIC
ELECTE
MAR 2 6 1987

F

A Simulation Environment for Schema

by

Margaret Ann St. Pierre

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for

the degrees of Master of Science and Electrical Engineer

Abstract

In present day circuit design, many independent simulation tools are available for analyzing cir-
cuits t various levels of detail. This thesis presents a framework to tie these tools into the
Simulation Environment in Schema, an integrated CAD system. The framework easily incor-
porates additional simulators, serves as a foundation upon which to build new analysis tools, and
provides the ability for mixed-mode simulation. The Simulation Environment is composed of
common data reprc. entations, a Goneric Simulator, and a single user interface. A common
representaion for too!ogical, model, and waveform data objects facilitates a uniform interface to
the ue;r and to all CAD tools. The Generic Simulator coordinates the 'low of data objects be-
tween each simulator and the user or analysis tool.

rho:;i Suprvisor: Professor Richard Zippel
Iile: Associate Professor of Electrical Engineering and Col',luter Science

Key Words and Phrases: CAD, VLSI, simulation

i2

Acknowledgments

I would like to thank:

My thesis advisor Rich Zippel, for the inspiration, focus, and encouragement that made this

thesis possible, for fathering the famous ski resorts upon which this thesis work was implemented,

and for providing me with quiet officespace.

Brian Williams for many stimulating discussions and suggestions along the way.

Jeff Arnold, Randy Davis, Steve Heller, and Jerry Roylance for comments on early drafts of

this thesis.

George Clark and Mike MacDonald for giving unity to Schema.

My friends back at the Schema Chalet.

Moses kla, Peter Nuth, and Pete Osler for interesting non-technical discussions.

Jim Restivo for faithfully escorting me to and beyond the finish line.

My family for their love and support throughout my many years of academia.

3

Table of Contents

Chapter One: Introduction 7

1.1 Motivation 7
1.2 Design Goals 9

1.2.1 Integrating Simulation Tools 9
1.2.2 Building Analysis Tools 10
1.2.3 Mixed-mode Capability 10

1.3 Overview of Thesis 10

Chapter Two: Design Methodology 12

2.1 Simulation Domain 12
2.2 Design Strategy 14
2.3 What is a Sirnulaticn Environment? 14

2.3.1 Coamion Representation 16
2.3.1.1 Objects 16
2.3.1.2 Object Types 16
2.3.1.3 Appropriate Types 17

2.3,2 The Generic Simulat,:r 18
2.3.2.1 Internal Simulation 19
2.3.2.2 External Simulation 20

2.3.3 Uniform Interface 21
2.3.4 Accomplishing the Design Goals 21

2.4 tmplementtion in Schema 22
2.4.1 Hiorarchical Organization 22
2 4.2 Con~traint Network 23
2.4.3 Creation on Demand 24

2.5 Summary 21

Chapter Three: ropology 25

3.1 Module Definition 25
3.1.1 Uniform Representation 25
3.1.2 Module interconnection 25
3. 1.3 Module Definition Creation 28
3.1.4 Uniform User Intei face 29

3.2 Defining New Module Types 30
3.2.1 Simple Modules 30
3.2.2 Compound Modules 30
3.2.3 Abstract Modules 31

3.3 Defining New Module Operations 32
3.4 Summary 33

Chapter Four: Models 34

4

4.1 Uniform Representation
34

4.2 Uniform User Interface 35

4.3 Defining New Model Types 35

4.3.1 Models Without State 36

4.3.2 Models With State 37

4.4 Defining New Model Operations 37

4.5 Summary
38

Chapter Five: Waveforms
39

5,1 Uniform Representation 40

5.2 Uniform User Interface 41

5.3 Display Types and Waveform Types 42

5.3.1 Analog Waveforms 42

5.3.2 Binary Waveforms
44

5.3.3 Defining New Displays and New Waveform Types 45

5.4 Mixed-Mode Capability 45

5.5 Summary
46

Chapter Six: Generic Simulator 47

6.1 Uniform User Interface 47

6.2 Initiation Phase
48

6.3 Initialization Phase 48

6.3.1 Locating Appropriate Modules 49

6.3.2 Interconnection of Appropriate Modules 49

6.3.3 Locating Appropriate Waveforms 50

6.3.4 Attaching Appropriate Waveforms 50

6.3.4.1 Input Waveforms 50

6.3.4.2 Output Waveforms 51

6.3.4.3 Mapping Waveforms onto Nodes 51

6.3.4.4 Mapping Wavcorms onto Pins 52

6.3.5 Locating Appropriate Models 53

6.4 Execution Phase
55

6.4.1 Internal ,Simulation 55

6.4,2 External Simulation 56

6.5 Completion Phase
56

6.6 Summary

Chapter Seven: Discussion
58

7.1 Summary
58

7.2 ImIcpom#,-ntation: Tho Simulation Environment Layer 58

7.3 Future Work: The Concurrent Mixcd.-Mcde Simulation Layer 59

7.4 Conclusion
60

References
61

Table of Figures

Figure 2-1: Simulation Environment in Schema. 15
Figu re 2-2: Hierarchical organization of Schema. 23
Figure 3-1: The topology and its placement in the hierarchical organization of Schema. 26
Figure 3-2: Inverter module definition and corresponding schematic presentation. 27
Figu re 4 1: Models and their placement in the hierarchical organization of Schema. 35
Figure 5-1: Waveforms in the hierarchical organization of Schema. 39
Figure 6- 1: Mapping of a single simulation node onto electrically equivalent nodes of a 52

f, erarchical module definition.
Figure 6-2: Summing current waveforms, current- I and current-2, to produce 54

current-suni for pin of a hierarchical module.

Chapter One

Introduction

CircL:it design requires the assistance of a comprehensive range o' computer aided design

(CAD) tools. many of which either currently exist or are under development. Individually, each

tool addresses a specific task in the design process. As an integrated collection, however, the

tools share datt and tasks across all stages of the design procuss. Unfortunately, no one system

has effectivety integrated the collection into a single design environment.

Research on such an environment is presently underway at M.I.T ..uith the development of

Schema [Ziopel 85]. Schema research focuses on providing a software environment for easily

integrating all CAD tools necessary for design and allowinq the effor' ess building of new tools

into the existing system. One area of major interest in Schema and of circuit design in general is

simulation. Fatal design errors are detected and circuit performance is measured by simulating

the operation of electronic designs. In this way, simulation invaluably contributes to the success

of high-performance circuit designs ann is a vital component of any CAD :.ystem.

This ihesis presents a Simulation Environment for Schema following in the footsteps of

the integrated software design envircnnient established in Schema.

1.1 Motivation

Many simulators have been developed to satisfy differont design iceds using a single

modeling Icvel of circuit astraciern. Often the designer is overwhf-.eImed tuy the need to learn the

op!-ratioi of and to manually recode circuit descriptions for each individul imulator. In addition,

CUtput waveforms associated with one parcular circuit module:s simulalion must be interpreted

ond manreally translated fnr use as input to tome other interconnected module's simulation.

flccause of the massive time invertmcnt require, I, this proc(. :s i:; typically omitted altogether.

The recent ht-4,jd Ias rjon towards niyd-mode sinulation w'lercoy different levels of

sirriuation are consolIkl::,.L(ito onre, soft;-,,c- p-c.kage. At th high end, the Sable [Hill 79, Hill 80]

7

Chapter I Introduction

system combines behavioral, register transfer, and gate level descriptions. Similarly,

Themis [Doshi 84] addresses simulation at the behavioral, register transfer, logic, and switch

levels. Both simulators deal exclusively in the digital domain, however; neither includes circuit,

timing, or linear level models, which are critical to the design of high-performance circuits. On

the low end, concurrent circuit, timing, and logic analyses are illustrated in both the Diana [Arnout

78, Antognatti 84] and Splice [Newton 78, Newton 791 systems. In addition, the second genera-

tion Motis [Chawla 75, Fan 77, Chen 84, Antognetti 84] program combines timing, switch, and

logic level simulators into one software package, running on a single mainframe; accuracy is

reduced by omitting the detailed transistor models available in a circuit level simulator such as

Spice2 [Nagel 75, Cohen 76].

These and others [Nestor 82, Thomas 83, Borrione 83, Lanthrop 851 are attempts to com-

bine simulators using a range of modeling levels into a single software pragram. One disadvan-

tage of this single system approach is a loss in computational efficiency. With increasing in-

tegrate(circuit complexity, the computational power required for simulating very large circuits

becomes a major boitleneck to the design effort. Even the use of the most advanced hardware

and software technology inevitably results in extensive execution times for a single system.

Expensivw design Jffort is halted while waiting upon simulation res ults. ^nother cost is incurred

from dica;rding old, yet still usable simulators to invest in snftware receding for a mixed-mode

sy,';.,m. For example, in an effort to provide an integrated computer aided design system for

Sandiai, a substantial amount of manpower was invested in understanding, recoding, and debug-

(jrnhj uidoc611!nQ ,.t'd industry and university software programs [Daniel 82].

With the acceleiated advancement of today's technology, 0ew simulators are continually

ti-.iriy duveljp :d u.ling state-of-the-art hardware technology, and more efficient, optimized, and

,)l)hitatd alnorithms. Dramatic speed improvements are achievable with special-puipose

hrilwar, such as the Yoiktown Engine [Pfister C2] and the Logic Simulation

Ma.cI flu,-Ab, Mamovici 83, and highly parallel algorithms, such as F'rsim [Arnold 651 and

M.,o)lhc 0 [Deutsch 841 designed spc'ifically for multi-processor systems.

,imulition alone cannot guarantee the success of today's high performance circuits. In

c.'ijtmnctiei with simnulalion, analysis tools are an essential ingredient of the design process.

Analysis iools operate on simul.-tion data This data may pertain to one siniulation, multiple

simulations, or ultimatoly different simulation lcvuls. Performance evaluation, verification of

- n/ mmu n m l i lm •Jinnmi m m••0ii

Chapter 1 Introduction

simulation results against specifications, and circuit partitioning for different levels of simulation

are just a sampling of invaluable analysis tools. Analysis tools also instigate simulations. An

analysis tool may schedule a series of simulations to compare the performance of different

designs or the behavior of a single dasign in different operating regimes.

Each analysis tool is simple to build, yet creating a simulator and uspr interface for each is a

major undertaking. In effect, the existence of the analysis tool alone is not justified. For example,

mathematical operatiors on waveforms are useful for analyzing circuit simulation results. For

instance, power consumption over time amounts to a simple multiplication of waveforms, yet

without a graphical user interface and a simulator interface, the tool is Unusable. The designer

would be fcrced to manually enter the simulation data points - a tedious, error-prone, and time-

consuming task - as well as interpret the numerical output data.

1.2 Design Goals

A framework is essential to tie simulation tools into a common environment. This thesis

presents such a framework: A Simulation Environmtent for Schema. The framework is

designed to eacL in_t__rte simulation tools, to se reve a a foundation fer building new analysis

h_,L_0, and Io, Lrovide mixed-mode caability. The following sections detail each of these design

goals.

[.2.1 InteJrdting Simllation Tools

The Simulation Environment is designed with the ability to readily i~itegrate new us well as

cinrently eiLiti'ig simulation tools. Simulation of all modeling levels inay ue easily incorporated;

this includes tools exploiting each of the various transistor mod..ling level,; "nd the simulators that

aiddress the more abstract circuit rtjpiesentations Without slowing JoVn the; user's design effort,

Sirlulatioa can be distributed to another local procetss nr remote engin, i;(can efficiently run

the simulation. Distributing the effort among whatever engines are currently available, and poten-

tinily least loaded, enhances the overall computational powor of th, (lesigner's environment.

Fithermore, because a large amount of time, mo,ney, and effort went into devuloping and main-

itining the cxisting simulation tools, they could remain constantly in use - greatly enhancing

computational power. Adding new simulators a!lows the environment to kep pace with the rapid

development of new hardware and software siiutlation engines.

ll lll~lm nlm.i i Il m am Ili lali ':

Chapter 1 Introduction

1.2.2 Building Analysis Tools

The Simulation Environment could serve as a foundation for building an unlimited number

of powerful analysis tools. Automatic partitioning algorithms can be developed for partitioning

large-scale circuits into a collection of blocks to be individually simulated at different modeling

levels. Another tool could schedule a series of simulations for each block to verify that it meets

specifications Additionally, small analysis tools could be designed to compare the results of

different simulations or to perform operations on simulation output. Comparison and evaluation

of the performance of new simulators could even be executed by an analysis tool.

1.2.3 Mixed-mode Capability

Ahhucc' mode refers to transforming the output data from one module's simulation for use as

input to an interconnected module's simulation, where each module may be modeled at different

levels of deiail. For example, certain portions of a design may require the accuracy of a circuit

simulation, while for other less critcal portions, a less exact switch or logic level simulation is

most appropriate. Both require simulation, yet using different simulators. With !he mixed-mode

capability, the Simulation Environmetit trunsforms the output analog waveforms from the circuit

simulation into logic waveforms for use in the switch or logic level simulation, and vicc versa.

1.3 Overview of Thesis

Chapter 2 opens with a brief overview of the types of SiMIllQGci ,ivailable. This naturally

k~I.s into a discussion of the goals of tile Simulation Fivironmnent and the approach taken to

:njliiev, tlt-.m. Next eatch compornnt of the Simulation Environment i:; briefly dcs-criled: the

uniform (Lit i rei.reseiitalions, a Generic SimLuItor, and a common user interface. The chapter

cho;S with ;.i discission of the techniques available in Schema that are 'SeiUl to the Simulation

EF vir on mnuit.

The cmrt,it topology, models, ,nd waveforms are the data lequired for simulation. Their

tuiform ru .ifrsent;tions and user interface ar discu;ssed in Chapters 3, 4, and 5, respectively.

When intf,r;Om inq additional simulators or building now analysis tools, only new data types and

r)(al opert')r; need to he r,;fned as described in the latter ';ections of each chapter.

Chapter 6 dIescriben 'ho- role of the Generic Simulator in the Sin.-oation Environment. The

10

Chapter 1 Introduction

Generic Simulator contains the simulation tools of the environment and generically interfaces

them to the objects in the environment, to the user, and to the analysis tools. This chapter

presents each step of the Generic Simulation Process.

Chapter 7 concludes with a summary of the Simulation Environment for Schema recounting

the properties achieved. Suggestions for possible future analysis tools are cited. These tools

could be easily built on top of the Simulation Environment in Schema.

'1

Chapter Two

Design Methodology

The currently available simulators are reiviewed with respect to ir.put and output data re-

quired for each. Next, a design strategy is developed to tie these simulators into a single

Simulation Environment. Each component of the Simulation Environment is defined along with its

corresponding role in the simulation process. And finally, the implementation of the Simulation

Environment within Schema is presented.

2.1 Simulation Domain

Many simulators have been developed to satisfy different design needs throughout the

various stages of the design process. This section briefly describe. the different kinds of

simulators in use today. Notably, each simulator utilizes different algorithms, accepts input such

as a circuit description, excitation signals and perhaps some modeling parameters, and ultimately

produces output data.

Circuit simaulators provide the most de.tailed lev.l of simulation; node voltages and branch

current waveform.s are calcuiated and plotted. General .urpose circ.iit simulators, such as

Spice2 [Nog -;1 75, Cohen 761 and Astap [Weeks 731, apply gu'neral algorithms for non-linear static,

linear ac, wnd non-linear transient analyses. Circuits may contain capacitors, resistors, inductors,

mutual inductors, voltage and current sources, and a wide range of nonlinear active devices

iucluding diodes, bipolar junction transistors (BJTs), junction field-effect !rarisistors (JFE rG), and

metal-oxide-semiconductor (MS) field-effect transistors (FETs). Each somiconductor device is

modeled with a set of process parameters. Spice2, for example, has thre.e built in types of MOS

device models: Shichman and Hodges, analytical, and semi-empirical models. At this level of

detail, circuit simulators are generally cost effective for circuits with a few hundred devices or

less. Execution time can be increased by replacing analytic device models with simplified table

look-up models relating device current to terminal voltages. These general-purpose circuit

z.imulators :re laigely independent of technology. If simulation algorithmns are tailored to specific

12

Chapter 2 Approach

technologies or applications, substantial speed improvements can be achieved. To take advan-

tage of the unilateral nature of MOS devices, relaxation-based circuit simulation [Dumlugol

83, Newton 84] algorithms prcvide up to a twofold increase in simulation speed over general-

purpose circuit simulators.

The linear-model simulator Rsim [Terman 83] represents MOS transistors as resistors in

series with a voltage-controlled switch. This model provides logical and approximate timing

information. Logic behavior is determined by a fast event-driven algorithm; transition times

depend upon on effective transistor resistance, and interconnect and gate capacitance. Using

this simplified linear model, networks containing up to 50,000 transistors may be simulated.

Instead of node voltages and branch currents, discrete logic states at network nodes are used.

Switch-level simulators such as Mossim [Bryant 81] and Esim [Terman 83] model MOS tran-

sistors as a network of on/off switches. This model captures the logical properties of a circuit

while ignoring many of the detailed electrical issues. A switching network is most appropriate for

simulating the bidirectional nature of MOS transistors. Furthermore, since so little modeling

information is retained for each transistor, this type of simulator is abl:, to handle larger scale

designs. Signals are typically represented in terms discrPte logic statEs in unit-delay time se-

quence.

A simplification of the switch-level simulator is the unidirectional qate-level logic simulartor,

which useS Nor, AND, OR, NAND, and other combinational lojic gates, and state-preserving com-

ponents such as flip-flops and counters. This simulator solve, simple bo;e'an equations to obtain

the Output state of the logic components. Timo may be in uiiit delay intervals or variable delay,

which more closely models continuous time. Unfortunately, not all MOS gate-level elements,

specifically pass transistors, are unidirectional in nature, and thus are not suitable for gate-level

simulation.

!egister-tranler level simulatos [Hafer P.3, Lewke 83] de;l with the overall structure and

architecture of a design. Modules, such as tull adders and sk'stolic arrays, are specified by

procedural descriptions. Because they simulate more abstract modules and their representation

of signals is somewhat courser than in the logical case, register-transfer level simulators are

usually over an order of magnitude faster than gate-level simulaiors for the same circuit.

At the highest level of abtraction, behavioral or functional imulators are used at the initial

13

Chapter 2 Approach

design phase to verify the algorithms of the abstract system to be implemented. In contrast to the

register-transfer level simulator, the actual structure of the circuit is not necessary for this type of

simulation.

2.2 Design Strategy

The first question to answer when developing a new system is "What are the design goals

of our system?". The Simulation Environment ties together the simulators needed by all phases of

the circuit design process. More specifically, the Simulation Environment in Schema provides (i)

simple extensibility for incorporating additional simulators, (2) a foundation for building and in-

tegrating new analysis tools, and (3) the capability to perform mixed-mode simulation. These are

the major design goals of the Simulation Environment.

A uniform interface is a natural consequence of the aforementioned design goals. This

can be viewed from two perspectives. For the designer of CAD software, A uniform CAD interface

facilitates additional simukation tools as well as providing the groundwork upon which to build

new analysis tools. For the user of CAD software, a common interface eliminates the unnecessary

task of learning the operation of each individual tool.

The question remaining is "'What approach or design strategy leads to these desired

properties?". Common data representations make it possible to create a uniform interface to

the user, the simulators, and the analysis tools. The following sections describe the Simulation

Env'ronient in Schenia, and how this approach achieves the design goals.

2.3 What is a Simulation Environment?

The major compoiients of the Simulation Environment are: a Generic Simulator, common

data represcrntations, a single user interface. Figure 2-1 depicis the iiit,.ractions of each com-

ponent within Schema. The Generic Simulator coordinates the flow of ,information between the

cimulation initiator and the individual simulatorm. rhe medium for information flow is a common

c'ata representation, and finally the user interface provides a slick gr3phical interaction with the

underlying data structures.

The Generic Simulator acts as an interactive guide in the Generic Simnlation Process:

14

Chapter 2 Approach

Schema

----- - -- -- -- --------- -- - - -1
I ~~- -.- - -

I Simulation I
Environment Sjiltr

finuI II o-

Simol a :or2I I

s iin uIia L ur Ij

i ~ofbiic SimulatorI I

Uniform

Useortc Ropresontationa

intL7r c Analyi
Tco~olbajg

Figujre 2 -1: Simulation Environment in Schemna.

1. The user interacts with the Simulation l-~nvironincnt by way of the user interface.
Analy--is tools interact directly with the Simulation Frnvironment Once thle ap-
propriate input data has been entered, -.;mulation is initiated by the User or by an
analy.,is tool. At this timne thme initiator chooses a specific siinuiator fromn amlong a rich
variety of available sinlu.lators and selects a specific region of a cit cuit for simulation.

2. The Generic Simulator initialize-input dlata for simulation. This inay ieq'i-ire ai trais-
lation of the input data to th- form required, I b the selucted simulator. IPrior to execu-
tion thme Generic Simulator interactively miotities the initiator in the ovent of amiy amn-
biguities, inconsistencies, or undefined qjuantities.

3. The s-rnulaticrn is performed.

4. The Generic, Simulator interorets thO Ouyilt dlata and transforms it into a common
representation. The results are then presented to the user, again via the user inter-
face, or are madc diiectly available to the analysis tools.

15

Chapter 2 Approach

The following sections take a closer look at each component and its role in the develop-

ment stages of the Simulation Environment. The final section discusses the contribution of each

piece toward the design goals.

2.3.1 Common Representation

2.3.1.1 Objects

For electronic simulators, typical input data comprise circuit topology, modeling

parameters, and excitation signals; typical output data are the resulting waveforms. Thus, the

basic entities or objects the Simulation Environment must supply to the Generic Simulator are

circuit topologies, models, and waveforms. Determining what objects exist is the first task in

designing the Simulation Environment.

For each object to be accepted by a simulator, a corresponding object in the Simulation

Environment is defined. Within Schema, a circuit design is made up of components called

modules. Modules and their interconnections are supplied by 'he circuit topology. Each module

may contain some local model information. For example, ti|nsistor modules may have threshold

voltages or logic gates may have propagation delays as part of their model. And finally, signals

are the waveforms associated with the input to and the output from simulators. In general, these

objects reprvsent the data essential for simulation, and thus essential to the Simulat:on

Environment.

2.3.1.2 Objrct Types

The next task is to further s'ibdivide the types of topology, model, and waveform objects

required in the Simulation Environment. This subdivision is dictated by the types of objects

each simulation tool simulates. A transistor, for example, has a ion-linear, linear, and switch

model; thus, these model types should be made available in the Simulation Fnvironment. Similarly

a circuit-levl simulator accepts topological modules including resistors, capacitors, transistors,

a-id waveforms such as exponential or piece-wise line3r voltages and currents. The ,t-ubdivision

of topological, model, and waveform types is explored further in Chapter 3, Chapter 4, and

Chapter 5, re.pectively.

There is an overlap in the; types of topological, model, and waveform objects accepted by

IG

Chapter 2 Approach

each simulator. An example of a topological module is the transistor. Although circuit, linear, and

switch level simulators all simulate the transistor, it is not necessary to define a different transistor

object in the Simulation Environment for each individual simulator that simulates it. The objects

defined in the Simulation Environmont are the union of the object types that could possibly be

simulated by any of the simulation tools. This is the key idea behind a common representation for

data objects in the Simulation Environment. The user interface, the Generic Simulator, and the

analysis tools built into or integrated on top of the Simulation Environme,t all interact with these

uniform data objects.

2.3.1.3 Appropriate Types

Of course, not all objects defined in the Simulation Environment will be accepted by each

simulator. A logic level simulator for instance does not simulate capacitor mudules, and exponen-

tial voltage waveforms. Thus, associated with each simulator is a specific set of appropriate

module, model, and waveforin types. These represent the types of objects each simulator ac-

cepts. Incorporating a new simulator requires the specification of a set .1f appropriate module,

model, and waveforn types.

While soma simulators handle different types of modlle.s, other simol,'itors share some of

the same types of Icdules. Circuit, linear, and 5witch-level simutators a!l have the MOS transistor

as an appropriate niodLcf type. But each of these simulatoi3 uses a ditff&;nt model for the MOS

transistor module type. A major feature distinguishing one kind of simulator over anouher is the

models it associates with its modules. For any given apprcpriite module 'ype, there may be one

or more appropriate model types. For the cir,'uit simulator Spice2, no model is expected for

modules of tP', resistor, yet for the MOS transistor, three model types are pos.iible.

Simul-tor selection also restricts the appropriate wavefrm types: different signals are re-

quired for different simulators. Voltage and current waveforros are expuctcd for a circuit-level

analysis, and binary waveforms are required for switch or logic, level analyis. To suipport the

mixed-mode capability of the Simulation Environment, if signals of one type can be transformed

into another type acceptable to a specific simulator, these types are al';o pait of the simnulator's

set of appropi iate waveform types. If a transformation operation on a binai y signal can produce a

voltage signal for a circit simulation, then binamy as well as the voltage signals are approprite

Cignal types for a circuit simulation.

17

Chapter 2 Approach

in summary, the object types in the Simulation Environment are the union of the types of

objects handled by the different simulators. As every simulator does not accept all types of

objects defined in the Simulation Environment, a set of appropriate types are associated with

each simulator. 1

2.3.2 The Generic Simulator

The Generic Simulator is made up of many simulators, and treats each component

simulator as a black box. It is only responsible for supplying input to and obtaining output from

the black box. Thus the Generic Simulator need never know about the ifiternal workings of each

component simulator. From outside the Generic Simulator, the user and the analysis tools per-

ceive the Gen'eric Simulator as a black box. Furthermore they never nccd to interact with the

simulators within the Generic Simulator.

The Generic Simulator interactively coordinates the flow of topology. moodel, and waveform

objects betweun the simulation initiator and each individual simulator. This ental.s obtaining the

input data from the user or analysis tool, Supplying the data in the repi escatation i erpired for the

simulator, invoking simulation execution, interpreting the rcsultitty otitpoi data, and placirg the

output data into the Simulation Environment for future analysis.

The Generic SMiLa1-tor interacts with two kinds of siinL~kln0_.'_: internal arid external. An

Intertial Siolular dircrctly manipulates the data objects pre' it 'vithiin the Simulation

Fnvironment, if) Much the samne way an analysis tool bUilt on top~ of the)iriulatiorr Environment

xvOUld. lit this cr~so, the sHnIukr1ltion initiator has the opportunity to 'intor i': vely cn()1 H. irnu'ction

execution; olUtput signal3 can) be nionijored in reul time. On the other hand, an exf _ in''! simuL/afor

creates its otvn data structurres. External simulat1,0ors typically exist on a remote procrss,:or(s) using

ar separate address space. Computatiornally intensive simulations are serV. off to special-purpose

hardware or multiprocesscr Gystems wAiMhout inhibiting the speed of the Siriulat ion E~ivironmnent's

current process. The combination of internal and external simulation of lrs the advantages of

both st'ategies and permits a large degree of flexibility in simulation.

The Gcnoric Simnultor expects the objects in the Simulation Environment to perform cer-

fn),ihtr as-] nio hilin, lr line il hier -level sisnulail, the module:; a ld tfivr corie rsss I irn' modtels maly his apwertled
to, file :.nt 0i apis oPtiate types.

Chapter 2 Approach

tain tasks, or operations. The operation actually invoked depends on the type of object being

asked to perform the operation, yet the object type is irrelevant to the Generic Simulator. The

same operation can mean different things depending on the type of the object. This technique is

known as data-directed 2rogramming [Abelson 85]. The following two sections present a more

detailed look at both internal and external simulators and what operations are required for each

kind of simulation tool.

2.3.2.1 Internal Simulation

Internal simulators have direct access to the objects in the Simulation Environment. Each

object involved in the simulation is delegated responsibility for delivering some local information

about itself or performing some computation using this information. To do this, specific simula-

tion operations are defined for each appropriate object type handled by the selected simulation

routine. For example, the NAND and NOR model types each have their own boolean operation for a

logic level simulation.

Internal simulation becomes a layer of these simulation routines where each general algo-

rithm stands alone as an indepenoent, modular unit. Common algorithms could then be shared

over different simulators. For example, relaxation-based simulators and asynchronous logic

simulators both exploit the inactivity of the circuit by using secctive-trace and event-driven al-

gorithms. One routine could serve both simulators. Other g;r1,ric alyorit!,|ns are useful for other

parts of Schema. The matrix manipulation routines used ior the general-purpose circuit simulator

may also bc useful in handling graphics.

A generic layer of operations on objects would ideally c-,mpilenint this layer of simulation

routines. these operations are similarly shared over different smrralation algorithms a; well as

other components of Schema. For instance, most types of w~ivforms have a generic internal-

value operation which calcultes and returns a value given a speciic point in time. This is a very

common operation used not crly by circuit level simulators, but also by display routines and

analysis tools. One generic operation is defined for each wavefnim type to satisfy the needs of all

potential callers.

19

Chapter 2 Approach

2.3.2.2 External Simulation

Prior to an External Simulation, each object in the Simulation Environment requiring simula-

tion must be transformed into the appropriate exteroal representation, usually a textual descrip-

tion language understarndable by the simulator. The descriptionl is then sent to a separate ad-

dress space where the simulator builds its own internal data structures for the simulation. If the

simulator exists on a remote processor(s), the description is sent via the local retwork or file

system. After simulation execution, the output data must be interpreted ard transformed into data

objects in the Simulation Environment.

Input transformations are instigated by the Generic Simulator, yet are actually performed by

the object itself. As in the Internal Simulation case, the particular operator invoked will depend

upon the type of object being transformed. A transistor object requires a very different transfor-

mation operator than that of an exponential waveform. Furthermore, because there is exactly one

representation for the transistor object in the Simulation Environment and possibly many

simulators that use this type of object, there may be many transformation operators defined for it

-- potentially one for each external tool that simulates the transistor. A switch-level simulator for

example, requires a different transistor representation than a circuit-level simulator and thus a

different transformation operator. In the case of output data, the Generic Simulator must however

supply a parser to extract the output information and to create the data objects within the

Simulation Environment. Transformation responsibility in this case lies with the Generic

Simulator.

For both types of simulators, each object has a certain set of ope.itions that it must per-

form. The Generic Simulator need never know the implementation details of these operations,

and each c;bject need not know about the interna! workings of the Gnleric Simulator. The

;ndividual simulators, the Generic Sirmlator, arid each object in the Simulation Environment are

all perceived as b ack boxes. Their internal structure andJ operation are essentially hidden and

isolated from each other. 7ne Generic Simulator can be (esigned ind(pendent of the type of

ob/octs it is im:lating. It is gu'rifc: in the true sense of the word. Thus, for the Generic Simulator

to perform its task, coordinating the flow of objects within the Simulatioii Environment, it must

:;imply know what operation to perform and on which objetct to perform it.

20

Chapter 2 Approach

2.3.3 Uniform Interface

The user and the analysis tools interact only with the data objects and the Generic

Simulator. Because of the black-box quality of the Generic Simulator, the user and the analysis

tools do not interact with the individual simulators.

The analysis tools built on top of the Simulation Environment have direct access to the

uniform data structures in the Simulation Environment, and thus can inleract with the objects in

much the same way as an internal simulator. Thus the interface to the topology, model, and

waveform objects, as well as the Generic Simulator is simple; the ana!ysis tools need only know

the operations defined for each. By just knowing the operations for accessing output waveform

objects and the operations for telling the Generic Simulator to halt the simulation process, an

analysis tool can interactively monitor the execution of an internal simulation the moment erratic

waveform behavior develops.

rhe user indirectly interacts with both the data representations and the Generic Simulator

through a graphical interface. The Generic Simulator interface amounts to a well-defined series

of textual, or menu-driven commands. The designer is thus spared the burden of learning the

operation of each individual simulator; instead, a working knowledge of tne Generic Simulator is

sufficient. Schcmatic:;, layouts, and icons serve as a graphical presentations of the topology.

The correspondence between the graphical presentations and 1he topology is dealt with further in

Chapter 3. Mod !s have a simple menu-driven interface. Wavuforms have display objects which

have the ability to represent themsulves graphically to the user; these are discussed in Chapter 5.

2.3.4 Accomplishing the Design Goals

A co.nmoni representation fur data is equivalent to defining a se! of object types and a set of

operations that can be perfom med on those ty;pes. These types provido the uniform interface

which enables us to achieve our d'Aign goals. Interfacing new CAD t,.)ls mequires only local

additions to the environment. Integrating an additional simulator may require new object types

and a set of operations for each type of object th. simulator handles. A new object type is detined

for the Simulation Environmvent only it the simul;tor actually simulates an object not yet defined in

the environirnt. Adding an internal simulato; may also necessitate the modular addition of

general simulation algoithms along with some ohject operations. I-or an external simulator, i :;et

of transformation operators and an otltput parser are necessary. Building new analysis tools

21

C"hapter?2 Approach

requires only a working knowledge of the objec'.s in the environ~ment, the operations that can be

performed on them, and the operations that are available for the Generic Simulator. Because

waveform objects are represonted uniformly in the Simulation Environiment, Output signals from

one simulation can be used as input to another simulation; the mixediriode property is a direct

result of the uniform data Structures. WNitt- the different levcls of simulation, a type transformation

operation may be necessary. *rhis is explored further in Chauter 5. In sunimary, all design goals

can be accomplished through tire local addition of iiew objects and co-rat-rns on those objects.

2.4A Implementation in Schema

The Simulation Environment is implemented in Schema In this snction. a brief overview of

Schema's hierarchical organ ization, constraint network, and] creation on lemnand techniques are

all described. In Subsequent chapters, we shall see how these stategies tie direcntly into the

Simulation Environment.

2.4.1 Hierarchical Organization

Schema is organized hierarchica-lly as shown in Figuire 2-2 where casih part ini the hierarchy

nay contain stbparLs. The root of the hierarchy is the Po~ ti',uio which has subparts called

'I ujO(t , and i-1nvironie~nt fo/d ,r. Projects serve I ai n r niz:tticnial rnILchanisni for gjrouping

toyether other Projects and Module folders. Environment fol~crs suppl' !he designer w~ith stan-

(lard libraries. A .ModtPP folder 2 contains the electronic circuit dt'ig!,; it has lcoo, layout,

1;tflmafic~lI, ,ind w:2vv.fonl folch: r parts. The user's giaphical interl'ace to the topology is

iairily thirough the scheriatic, layout, and icon presentations. And finally, waveforin folders hold

collections of waivoformr specifications, simlaL'tiOn stimuli, and sirimulation results. I his pirtition-

ir:g allows ti!, us;i ko conceir~ite (in one givetn hierarchical level of desigLn at any particular time.

ierarchical .,ryani.-ation is an essential strate:gy in controlling the 'omwploxity of large srale

desigils.

Each object in the Simulation Environment naturally fits into the hlirairchical organization of

Schema. Th e cii c uit topology and simuimllion wavelorins are parts of Motdule folders. Because a

2Kri r i(foldiers- mnd modirir ;r' a Jgo frvrcnt *ri Iilu- f hi rsint cal rc-ason. I' y weie w ,rec fly nainetl r.lo l re's a1re
romonierni.; of iVar inomoogy, thtcpilolr;V is A Coml sold 0i i : m~ rr odule folder.

22

Chapter 2 Approach

model may be shared over many modules, models are collected into folders located directly in the

user's environment. In later chapters, we shall see how each of the objects also naturally con-

forms to this hierarchical representation.

Portfolio

> Project(s)

> Project(s)

• Module Folder(s)

Ico (s)

- luyout(s)

Schww tic(s)

• t pology

Waveform Folder(s)

- Waveform Folder(s)

f v ironment Folder(s)

- Fnv onvent Foller(s)

Model Folder(s)

I > Model(s)

S McJu l e Folder (S)

> Waveform Fl, ider(s)

> other library facilities

Figure 2-2: Hierarchic,1l organization of Schema.

2.4.2 Constraint Network

Objects may contain parameters. Relationships called constraints are held between these

parameters. A transistor has local width, length, and shape-factor parameters where the width is

constrained to be the length multiplied by the shape factor. All constraint relationships are

specified in a global constraint network. This permits constraints between the parameters of

different objects. Complex timing relationships between the parameters of many different

waveforms can be captured in the constraint network.

23

Chapter 2 Approach

This technique is primarily useful for the automatic propagation of constraints through local

computation. Modifying one waveform's parameter automatically propagates to those waveforms

constrained to it. In the event of far-reaching effects, constraint propagation saves the designer

from the tedious and time-consuming process of manual updates. Analysis, synthesis, and

reasoning tools can also make use of the constraint network in transistor sizing or circuit verifica-

tion, for example.

2.4.3 Creation on Demand

Creation on demand is the technique of creating an object's Internal structure only when it

is needed. In the meantime, the external environment only knows the object exists; typically this

is done by knowing the name of the object. Creation on demand applies equally ov:ar all objects in

the hierarchy. Once the internal data structure has been created, its intrnal parts likewise need

not be created until reCquired. For example, if the designer is interested in only in one specific

module folder in a large hierarchy of projects and module folders, then it is only necessary to

create the parents of the desired module, beginning with the designer's Portfolio. This technique

has the advantage of saving valuable memory space and subsequent garbage collection time - a

substantial savings when dealing with large-scale designs.

2.5 Summary

The Simulation Environment provides a uniform CAD interface, a consistent user interface,

and mixed-mode capability by using a common representation for simulation data objects- circuit

topologies models, and waveforms. The Generic Simulator coordinates the flow of these objects

between each simulator and the simulation initiator. The data objects, the Generic Simulator, and

the user interface together make up the Simulation Environment as implemented in Schema.

24

Chapter Three

Topology

The topology contains the interconnection information of a circuit design. The structure of

a topology deviates from the general hierarchical organization of Schema in that it does not

contain subparts. Instead, the topology has a module definition and a module type. The module

definition is useo for the simulation of the current topology. The first half of the chapter con-

centrates on the module definition: its uniform representation, submodule interconnection, and

user interface. *he module definition defines a new module type. The basic module types as well

as techniques for creating new module types and operations are examined in the remaining half

of the chapter.

3.1 Module Definition

3.1.1 Uniform Representation

The module definition contains submodules, pins, nodes, parameters, and models. The

submodules may also have submodules. In this way, modules fit naturally into the hierarchical

organiiation of Schema, as shown in Figure 3-1. Together, the submodules, pins, and nodes

specify the electrical connectivity information. Parameters name quantities which are tied to

Schema's constraint network. Models are discussed in detail in Chapter 4. The topology, as all

objects in the Simulation Environment, has a uniform representation.

3.1.2 Module Interconnection

Modua interconnoction, an essential piece of electrical information, is accomplished with

pins, nodes, and global pins. A pin is a module's interface to the outside world. Transistor

modules for example cortain four pins: gate, source, drain, and body. Modules are intercon-

nected by attaching theii' pins to nodes. And finally, a global pin is a special pin seen by all

modules spanning the hierarchy. It may connect through a common node to any module pin.

Global pins are used mainly for supply voltages such as Vdd and Vss.

25

Chapter 3 Topology

Modul, e Folder(s)

- > Icon(s)

- layout(s)
Schematic(s)

-> Topology

Module Definitlon

Pin(s)
Mode(s)
Perameter(s)

Model($)

M Module Type

> Waveform folder(s)

Figu re 3-1: The topology and its placement in the hierarchical organization of Schema.

Each module pin knows (1) the nodes connected to internal modules, inodes, (2) the nodes

to which external modules connect, enodes, (3) its direction, and (4) its pairent module. In Figure

3-2, the inverter module has four pins associated with it: A. A-Ibar, Vdd, and Vss - of which the

latter two are global pins. They all have nodes that connect to the pins of internal modules. Pin A

has an internal node n3, no nodes connected externally, the direction i,.put, and a parent, the

inverter module. The gate pin of the enhancement mode eMOS module has no nodes internally

connected, but does have an external node n3, the direction, input, and the eNOS module as a

parent.

Each node knows all the pins attached to it and the internal pins for which it is the internal

node. Node n2 is attached to pin A-ha" of the inverter module, the gato and drain pins of the

depletion mode dMOS module, and the drain pin of the eMOS module. Pin A-bav is tile internal pin

for which nZ is the internal node.

26

Chapter 3 Topology

Vid

IInverter Inverter

Module Schematic
n Io

Definition
Icon

-Icon

Modul e IIcon

I_ _ - I , I-

A-bar A-bar

.2 Output

:: Icon

-- -- -. I A ir..o
-- ~ Input 1

coresondgscmacprsnti.

W27 4

]©P°o.

VS S

Figttre 3-2: Inverter module definition and corresponding schematic presentation,

27

Chapter 3 Topology

3.1.3 Module Definition Creation

Prior to initiating a simulation, a module definition must be available. If the definition does

not exist, it is initially created from the most recent graphical schematic or layout presentation. A

module definition may however already exist from some other simulation. In this case, if it is not

Lup to date with the latest version of the presentation, it is updated. This section describes the

process of creating or updating a module definition from the presentation.

The presentation is given responsibility for creating or updating the module definition. If the

definition is nonexistent, a dummy module object is created for the definition; it initially has no

submodules, pins, or nodes. Then for each part in the presentation, a topological correspondent

is created io the module definition, if none exists. Topological correspondents are submodules,

pins, or nodes in the module definition; the module definition is updated accordingly.

A schematic presentation for example, is composed of icons and wires that contain place-

ment and display information. Pin icons, module icons, and wires in the schematic have topologi-

cal correspondents of pins, modules, and nodes respectively, in the module definition. A

schematic for the inverter is shown in Figure 3-2. Wire-2, Wi re-3, Wire-5, Wire-6, Wire-7,

and Wi re-8 of the inverter schematic all have node n2 of the inverter definition as their topologi-

cal correspondent. The Input Pin Icon and eMOS Icon have topological correspondents of

Pin A, and the eMOS module, respectively. Associated with each icon is a set of display pins used

to connect wires. These display pins are not shown graphically, yet they do have topological

correspondents in the module definition. The eMOS-Icun has three disp!ay pins, each of which

has a topological correspondent - the gate, source, and drain pins.

The module definition is created at the top level; the submodules and their interconnections

are created. The internal structure of each submodule is only created on demand. Once this

top-level module definition has been generated, it may be saved in a topoiogy save file for future

use. When the file is read in during a new Schema session, the module 0.4finition is not created,

but rather a new module type is defined. In this case, it is not necessary to create the definition

from the presentation; the definition can be simply created from the module type.

28

Chapter 3 Topology

3.1.4 Uniform User Interface

The module definition is visually transparent to the user. The user indirectly communicates

with the objects in the topology's module definition via the graphical schematic or layout presen-

tation. During the simulation process, the presentation is used as a read-only medium for extract-

ing or modifying electrical information in the module definition. Because each display object has

a topological correspondent in the module definition, the user can easily access electrical infor-

mation. Similarly, each part in the module definition has a presentation correspondent. In this

way, the parts of the module definition may report back to the user.

The presentation is a flat structure, whereas the topology is hierarchical. The correspon-

dence between the module definition and the presentation is only for the top-level modules in the

hierarchical definition. This presents two problems when the user tries to examine the electrical

information in the lower level modules. First of all, the only topological components accessible to

the user are those having a correspondent in the presentation. Any parts of submodules in the

module definition do not have presentations associated with them. Secondly, these parts may not

even exist. When the module definition is first created, only the top level objects and their

interconnections may exist.

These problems are solved with the zoom-in facility. Suppose an inverter icon is a part of

the user's current presentation, and the user wishes to set the length and width parameters of the

transistors inside the inverter module. Further suppose the inverter module is not fully created,

i.e., the transistors do not yet exist. The zoom-in facility finds the layout or schematic presen-

tation from the module fo!der of the inverter icon, and makes it visible to *he user as a reaJ-only

reference for examining the submodules of the inverter module. In order to examine the tran-

sistor submodules of the inverter, the inverter must first create its submodules. During the crea-

tion process, a correspondence is set up between the inverter's presentation and the module

instance in the same manner as before. The advantage to this strategy is a single schematic or

layout presentation is useful for all modules of the same type - not just the mcdule definition.

29

Chapter 3 Topology

3.2 Defining New Module Types

A new module type is defined from the module definition, or from a textual description

stored in the topology's save file. The type is used to create a separate copy of the module

definition for use as a part in some other module. When the type is created, operations are

automatically defined to enable an object of the new module type to create its own parameters,

constraints, submodules, pins, and internal interconnections. Three basic module types are avail-

able: simple, compound, and abstract.

3.2.1 Simple Modules

Simple Module Types do not contain submodules. They may, however, have pins,

parameters. and constraint relationships, which are generated as soon as an object of this type is

created. Examples of simple modules include the resistor, capac i tor, dMOS and eMOS tran-

sistors, and inverter, NAND, NOR, XOR, OR, and AND logic gates. These types are mainly defined in

the designer's environment. Another distinguishing feature of simple modules is they typically

have no schematic, only an icon. The following examples depict simple module type definition for

the res i stor and eMOS transistor.

(definodule resistor siinple
(resistance) ;paramneter definition
(pins p+ p-)) ;pin definitions

(deffnodtmle eMOS siaiple
(width length shape ;paranieter definitions
source area source--perimeter
drain-area drain-per imeter)
(pins gate ti t2 body)

(c* (>> width) ;constraint between parameters
(>> shape)
(> length)))

3.2.2 Compound Modules

Compourd Module Types have submodules; and thus, can bc hierarchically structured. As

%ith simple modules, pins, parameters, and constraints are all generated when an object of this

type is first created. Pin creation is particularly important at this point; external modules can then

connect to this module without knowing the internal structure of the module. The submodules

and their internal interconnections are created only upon demand. The type associated with each

30

Chapter 3 Topology

user-defined topology is usually a compound module type. An example of an inverter module

type follows:

(defmodule inverter general

()
(global-pins Vdd Vss)
(pin a input)
(pin a-bar. output)
(module pulldown eMOS) ;submodule definitions
(module pullup dNOS)
(connect (>> t2 pullup) ;internal connections

(>> Vdd))
(connect (>> tI pulldown)

(>> Vss))
(connect (>> gate pulldown)

(>> a-bar))
(connect (>> tI pullup)

(>> gate pullup)
(>> t2 pulldown)
(> a-bar))

3.2.3 Abstract Modules

Abstract Module Types are generalizations of a class of module types with similar charac-

teristics. For example, there are many module types that have two pins, such as the res is L o r,

capac i tor, and inverter. 'he abstract module type, Two-Pin--Dev ice, captures this notion.

(defmodule two-pin-device abstract
:no parameters

(pins p+ P-)) ;pin definition

The res i s to r can now inherit this abstract type, and thus implicitly includes two pins.

This is knowni as type Inheritance. The previously-defined simple module typc, res is tor, is

redefined as follows.

(defmodule resistor simple
(resistance)
(includes two-pin--device)) ;inherits two pins

Another abstract module, MOS, captures the general characterilics of MOS transistors

including width, length, and shape parameters. Additionally, a constraint is placed between these

parameters.

31

Chapter 3 Topology

(defmodule MOS abstract
(width length shape
source-area source-perimeter
drain-area drain-perimeter)
(pins gate tl t2 body)
(c* (>> width)

(>> shape)
(>> length)))

This abstract module is then used to define specific types of transi.tors, such as eMOS and

dMOS, with these implicit parameters and constraints. Type inheritance geatly simplifies the type

definition.

(definodule eMOS simple
()
(includes MOS)) ;inherits M0S characteristics

3.3 Defining New Mo.,le Operations

A layer of general, all-purpose accessors and operations is currently defined for topological

objects. This layer is independent of any particular simulator and thus Is useful not only to the

Generic Simulator, but to any tool requiring access to topological inforcation One very basic

operation gives modules the ability to create their own submodules if he, have not yet been

created. Another oper3tion perinits a module definition to dlump its data structure in such a way

that a module type is defined when the dump forms are evaluated. Other localized operations

may be easily incorporated.

Because a general layer of operations on topological oblects currntly exists, integrating

additional internal simulators does not require the addition of a new operators. For an external

simulator, however, a transformation operation must be defined to translate the data objects in

the environment into a textual description for the simulator. For each mcdule type the simulator

accepts, a new transformation operahion i defined. Simolo lraslormaticn operations for creat-

ing a Spice2 input deck are shown 'oeflow.

32

I.Lk

Chapter 3 Topology

(defmethod (resistor :spice-deck) (stream)
(format stream "R-D -D -D -F-%"

(simulation-resistor-number self)
(simulation-node-nunber (>> p+))
(simulation-node-number (>> p-))
(>> resistance)))

(defrethod (MOS :spice-deck) (stream)
(format stream "M-D -D -D - -D -A W=-D L=-D-%"

(simulation-MOS-number self)
(simulation-nude-number (>> t2))
(simulation-node-number (>> gate))
(simulation-node-numnber (>> t1))
(simulation-node-number (>> body))
(send (send self :get-model) :nalne)
(>> width)
(>-- length))

Notice a single op ration i!; defined for a whole class of MOS devices. In other words, this

operation is performed on all modules that have the abstract MOS type; this includes eMOS module

type redefined above. Thus, not only is the type inherited, but the operations defined on the type

are also inherited.

3.4 Summary

A topology contains a module definition and a type. TIhe module definition is the topologi-

cal object used in simulation. It is uniformly represented within the hieru;rchical organization of

Schema. It is initially created from a presentation and servos to define the module type. In this

way, new types and their operators can be easily integrated into the Simul;ition Environment. The

simple additon of new types and their operators facilitates extensibility to both Internal and

external simulators.

33

. ~~~ ~ ~~li =mm = = mm -

Chapter Four

Models

Because simulators model the behavior of real devices, models play a vital role in the

simulation of circuit designs. In the Simulation Environment, a model may be associated with

each module being simulated. Models contain many of the electrical quantities required in

simulation. The uniform representation, the user interface, and the basic types of models are all

discussed in this chapter.

4.1 Uniform Representation

Models are not hierarchical; they do not contain other models. Instead, models have

parameters such as threshold voltages and oxide thicknesses for circuit level transistor models,

and setup times. propagation delays and hold times for logic-level models These parameters are

not the associated with the constraint network. In the hierarchical organization of Schema,

models applicable to a particular type of module are collected into a model folder. Similarly,

model folders for different modules are grouped into environment folders as shown in Figure 4. 1.

At any one level in the environment folder hierarchy, there is at most ont. model folder for each

moOule type.

It is interesting to note that mzdel folders and their respective models are kept separate

from the module folder for which apply. Rather models and model folders are classified by

environment, and the information contained in the module folder is shared over all the environ-

ments. In this way, environments can be configured by a particular fabrication process, for

example. By simply switching environments, a new set of models corresponding to a different

fabrication process can be used. The major advantage to this approach is that circuits can be

designed independent of the fabrication process, or indeed, any other technological division.

34

Chapter 4 Models

fnv Ironmunt Folder(s)

Fnvlronment Folder(s)

-- '----* Model Folder(s)

I :b Model(s)

other library facilities

Figure 4.1: Models and their placement in the hierarchical organization of Schema.

4.2 Uniform User Interface

The user interface to creating new model folders and models is simply menu-driven and

self-explanatory. If the model folder ior the module to be modeled does not exist, a new module

folder is first created. A new model is generated by selecting any one of the currently defined

model types for the chosen module type. Furthermore, the user is fre'e to modify any of the

parameters of the newiy-created model.

4.3 Defining New Model Types

In the Simulation Environment, each newly.defined model type must specify both a module

type for which it is applicable and a list of parameters. A default value, a short documentation

string, and a dimension accompany each parameter definition.

While a model type corresponds to exactly one module type, each module type may cor-

respond to several different models. The MOS transistor is a prime example of a module having

many model types: switch, linear, shichman and hodges, analytical, and semi-empirical models.

Each model type may produce several individual model objects. There may, for example, be

special models for worst-case speed, worst-case power, and worst-case noise margin.

Two basic types of models exist: models without state and models with state. Models

35

Chapter 4 Models

without state may be shared by modules of a common type, but models with state may not be

shared. Modules may require the use of both kinds of models; some parameters may be shared

over many devices of the same type, whereas other parameters refer to the local state of the

device3 . The following two sections describe each model type and explain how to define new

model types.

4.3.1 Models Without State

Modules of the same type share a common model without state. The obvious advantage to

this approach is a savings in memory space because only one copy of the model is generated.

This does not imply that all devices of a common type must share the same model. This

mechanism just facilitates a sharing of a common model. Some modules of a common type may

require one shared model without state, while others of the same type may require a different

model without state.

Models without state are useful to both external simulators and internal simulators. In a

logic level simulation, all NANO gates in the circuit may share common values for transition times

along with a common boolean operation. In this case, a single shared model without state is

useful to all modules of type NAND, regardless of whether the logic level simulator is an external or

internal simulator.

For the abstract module type MOS defined in Chapter 3, a abstract Spice2 model is defined

as follows:

(define-mnodel MOS spice-MOS ()
(vtO 0.0 "Zero bias threshold voltage" :voltage)
(kp 2.0e-5 "Traisconductance" :current per-voltage-s(luared)

(gamma 0.0 "Bulk threshold parameter" :sqrt-voltage)
(phi 0.6 "Surface potential" :volt.age)

rhe new model type is called sp i ce-MOS and its parameters are those that are used over

all three MOS device models defined in Spice2. A s p i c e - MOS - a ria 1 y t i c a I model type can now

be defined with the additional parameters required for simulating an analytical model. Since this

new model includes the sp ice-MOS model, all of its parameters will also be included.

3This case has not yet been dealt with exolicitly. Either the two separat models could both be cached in the module,
or another type could be defined having local slate along with a pointer to the shared model.

36

Chapter 4 Models

(define-model MOS spice-MOS-analytical (spice-MOS)
(lambda 0.0 "Channel length modulation" :inverse-voltage)
(ucrit 1.0e4 "Crit field nobility degrad" :voltage-per-length)

And finally, this abstract model is used to define a general model for the eMOS module. The

model restricts the channel type to ii-channel, while also including all the abstract charac-

teristicsof the spice-MOS-analytical and spice-MOS modeltypes.

(define-model eMOS spice-eMOS-analytical (spice-MOS-analytical)

(channel-type "Channel-type" :value nMOS))

4.3.2 Models With State

As the name implies, a model with state stores information relating to the current state of

the module, such as charge, binary state, and local variable bindings. Internal simulators use

models with state to temporarily store simulation data. The Q parameter of the

logic-D-f ip-flop model and the state parameter of the Rs-i m-MOS model are recalculated

for each event or clock cycle of the simulator.

(define-model-with-staLe D-flip-flop logic-D-Flip--flop
(Q "Cur'ent state" :values '(t H X)))

(define-model-with-state MOS Rsimm-MOS ()
(state "Current state" :values '(on off unknown weak))
(rstatic-miiin "Minimuim static resistance" :resistance)
(rdynlow "Dynamic low resistance" :resistance)

An imple;nentation of Rsim also requires an initial determination of the effective static and

dynamic resistances of each MOS device. These parameters are calculated one time only from

the local parameters of each module and are reused over many simulations. To sum up, the

parameters of a model with state in..y depend on the model's local state and the module's local

properties.

4.4 Defining Now Model Operations

Defining ope'ations for models is a very powerful tool for promoting modularity in internal

simulation design as well as in integrating additional external simulators. For internal analysis

tools, models perform certain opeations such a drain current calculations, boolean functions,

37

-- . . - ,,,, i i i I l = m mmmm, i I un i mmm•i,

Chapter 4 Models

and behavioral-level procedures. For external simulators, transformation operations can be

defined similar to those defined on modules.

4.5 Summary

Models have parameters which hold the electrical information required during simulation.

Models are located in the designer's environment and are cached in the module prior to simula-

tion. The cached model is then available for future simulations. Two basic types of models exist

in the Simulation Environment: models with and without state. New models and operations can be

built out of these basic types.

38

Chapter Five

Waveforms

Waveforms embody any type of excitation or response signal used in the simulation and

analysis of alectronic circuits. In the Simulation Environment, the uniform waveform represen-

tations are patterned after the input and output signals of simulators. This chapter briefly ex-

amines these uniform representations and how they fit into the overall hierarchical framework of

Schema. Then an introduction to the uniform user interface leads naturally into a discussion of

the display types, their associated waveform types and operations, and the usefulness of the

constraint mechanism. And finally, type conversions are discussed with respect to the mixed-

mode property of the Simulation Environment.

Portfolio

> Project(s)

> Preject(s)

> Mudule Folder(s)

> Waveform Fcolder(s)

~ Waveform Folder(s)
Waveform Display(s)

-* Wnveforms)

L- Waveform(s)

Waveforn Folder(s)

rnvironment Foller(s)

SWaveform Foldzr(s)

other library facilities

Figure 5-1: Wavoforms in the hierarchical organization of Schema.

39

Chapter 5 Waveforms

5.1 Uniform Representation

Waveforms are the uniform mechanism for communication among modules in the

Simulation Environment. The means of organizing and grouping waveforms, waveform folders,

the means of displaying waveforms, waveform displays, and the actual waveforms objects them-

selves, provide the mechanism for fitting waveforms into the hierarchical organization of Schema

as shown in Figure 5-1. This section gives a brief overview of each, along with its dedicated

purpose in the Simulation Environment. This background, in combination with a discussion on

the applicability of the constraint network in the waveform domain, lay:; the foundation for the

implementation details presented in the remaining sections.

In the hierarchy of Schema, waveform folders are parts of projects, module folders, and

environment folders. As a project pat, a waveform folder serves as a medium for capturing many

of the simulation stimuli, e.g., clocks, control signals, and waveform specifications that are shared

between the simulations of different modules. As a module-folder part, a waveform folder con-

tains waveform information pertaining just to the module. Wavelorm folders that are project and

module parts are generic and thus may be shared by many different environments. And finally, as

an environment folder part, a waveform folder holds simulation results. In the same way that

models are associated with a particular environment, so are the waveforms resulting from simula-

tions that use those models. Allowing waveform folders at many levels in the hierarchy permits a

large degree of modularity in organizing the waveforms of very large circuit designs.

Waveform folders contain other waveform folders as well as waveforn displays as parts. As

the name implies, a waveform display object holds the information required for a visial display to

the user. A display object, for example, could contain information regarding maximum and min-

irnum axis amplitudes, horizontal and vertical scaling, and dimensonal units. This information is

convenienty useful to display routines defined for the objects.

One level deeper in the hierarchy, wavcform displays hold a orderc.I set of waveform parts.

These parts represent the actual signal values. In keeping with te hierarchical structure of parts,

waveforms may also have waveform parts. Waveforms are ordered in increasing value along the

x-axis to guarantee fast searching through parts.

Constraints may be placed among parameters internal to a waveform, between the

waveform parts of a common display object, or across waveform parts of different display objects.

40

Chapter 5 Waveforms

A ramp has parameters of initial -x, f inal -x, and del ta-x. In this case, del ta-x is numeri.

cally constrained to be equal to the difference between the rinal-x and the initial-x

parameters. This is an example of a constraint placed on parameters internal to a waveform.

Another constraint may be tied between parameters of waveform parts in a common display

object. In a sequence of ramps, the i n i t i a 1 - x parameter of each ramp part of a display object

is constrained to be equal to the final -x of waveform part preceding it. This constraint, in

conjunction with the aforementioned internal constraint imposed upon each individual ramp,

makes it possible to achieve simple shifting operations along the x-axis. Changing one parameter

locally propagates the constraints to shift all waveform parts of the display object to the right or

left along the x-axis.

Finally, constraints may be placed across waveforms parameters in different display ob-

jects. This is especially valuable when specifying complicated timing relationships between input

signals. Consider a typical dynamic random-access memory chip where read, early-write, write,

read-write/read-modify-write, page-mode read, page-mode write, and Rau-bar-only refresh cycle

timing relationships each occupy a full page in the standard MOS memory data book. Local

constraint propagation to achieve global consistency over the numercus compiicated timing

relationships associated with very large performance circuits is a very valuable asset to the circuit

designer of today.

5.2 Uniform User Interface

Waveform displays provide a powerful user interface to all waieform objects of the

Simulation Environment. They contain the essential data and operations for graphical entry and

screen display. The types of display objects defined in the Simulation Environment are geared

toward the visual representation univers;ally sketched by today's circuit designers and typically

observed on standard test equipment such as the oscilloscope or logic analyzer. Rather than

irexact sketching with paper and pencil, complex adjustments of knobs and buttons, and reams

of computer simulation printouts, a simple uniform menu-driven, bucky-key interface tc, each

display type is furnished. The user may then graphically enter input waveforms, and view simula-

tion results via a common waveform display interface.

41

Chapter 5 Waveforms

5.3 Display Types and Waveform Types

Display types are selected on the basis of input and output waveform needs for the different

simulators. The following sections present a few of the possible types of waveform displays. For

each display type, a set of basic waveform types is also defined. Waveform objects are created
from these basic types and subsequently become parts of the display objects. Other waveforms

can be added to this basic set as long as they supply the necessary graphical entry and screen

display routines. Alternatively, additional compound waveform types can be generated from this

basic set. This generation of new waveform types is performed in much the same way as the

topology's type is automatically generated from the module definition a% described in Chapter 3.

5.3.1 Analog Waveforms

Graphically, analog display objects are two-dimensional. Horizontal and vertical axes con-
stitute any continuous dimensions, such as voltage, current, time, frequency, power, and

capacitance. Maximum and minimum axis amplitudes are also display attributes.

All waveform parts of analog display objects are implicitly given parameters of i n i t i a 1 - x,
f i n a I -x and de 1 ta-x, where de 1 t a-x is numerically constrained to be equal to the difference

between the f i n a 1 - x and the i n i t i a 1 - x parameters. rhe user has exp!icit control over setting

and constraining these values.

Two basic types of waveforms are parts of analog display objects: functions and analog

arrays of (x,y) pairs. Functional type, are convenient in three importani 'Nays: first as input to

circuit level simulators, secondly as a simple graphical entry form for th, user, and finally as a
compact desci iption of the waveform. Levels, ramps, tinusoids, and exponentials represent the

common s(-, rf functional types currently available in the Simul'tion Environment. In general any

function, y - t(.), can be included. All functional constants, such the frequency and amplitude of

a sinusoid or th, *,,ie ,'oi.t:nt of an exponential, are parameters and thus may be constrained. A

level waveform type is defined as follows:

(defwaveform level sfinple

(y))

In addition to the implicit parameters and constraint, an explicit parameter, y, has also been

defined. In the fo!lowing type definition, the ramp imposes an explicit constraint between the y

parameters; this is similar to the implicit constraint imposed in the x-direction.

42

Chapter 5 Waveforms

(defwaveform ramp simple
(initial-y final-y delta-y)
(c+ (>> final-y)

(>> initial-y)
(>> delta-y)))

Because simulation output of circuit level simulators is typically long listings of (time, value)

pairs, an array waveform type is the most efficient data structure for memory storage. A sum-

marized g r aph i c a l - f o rm is created to allow for fast visual display.

(defivaveform analog-array simple
(pts graphical-form accuracy))

Frequently the output points resulting from a detailed simulation run are extraneous.

Furthermore, the designer is often only interested in a transition time or time constant of some

selected portion of the waveform. At the expense of some accuracy, many of the points are

discarded and replaced with a summarized version. In essence, this summarization process can

be viewed as a conversion between the waveform array type and the functional waveform type. At

first, the array waveform could be naively viewed as a series of ramps. At this point, the major

difference between the two types is the inherent constraint mechanism associated with the ramps

parameters. One-to-one mapping for the conversion of the detailed arra, to the ramp type would

be absurd. A more realistic approach applies a combination of heuristic techniques, rigorous

curve-fitting algorithms, and desired accuracy level to produce a summarized series of piecewise-

linear segments, or a combination of piecewise linear and exponential segments, as is more

typical of waveforrns resulting from a digital circuit. Detailed simulation results are then discarded

for the more sutnmarized version The currently defined conversion opeations are presented in

[Solden 861.

In addition to conversiorn and summarization operations on functional and array waveform

types, many mathematical operations are defined [Solden 86]. Standard tinary operations useful

in analysis are interpolatiorl, differentiation, and integration. Others Gtandard operations involving

more than one waveform operand include addition, subtraction, multiplication, and division.

Operations such as these are extremely powerful for calculating power lassage, effective resis-

tance and capacitance. Moreover, defining additional waveform operations is simple. It requires

only a local understanding of the waveform data structures described above, in addition to

knowledge of the basic operations already defined.

43

Chapter 5 Waveforms

5.3.2 Binary Waveforms

A binary display type is built on top of the analog display type with a restriction placed on

the maximum (1) and minimum (0) amplitude of the y-axis. The x-dimension is either continuous

(variable-delay) or discrete (unit-delay) time.

Three basic types of waveforms can be parts of binary display objects: steady-state,

transition, and binary array. These types were selected on the basis of their usefulness as input

and output to linear model, switch, and logic level simulators.

Steady-state and transition waveforms implicitly inherit the same parameters and constraint

in the x-direction described for the analog case. In addition, steady-state waveforms have a state

parameter, and transitions have i r i t i al -s ta te and f i na l -state parameters. States may

have values of logic zero (0), logic one (1), a high-impedance (Z), and an unknown (X).

(defwaveforin steady-state siinple
(state))

(defwaveforin transition simple
(iitial-state final-state))

Steady-state and transition waveforms are similar to the level and ramp defined for analog

displays, yet with the restriction on values of state. In the case of the transition however, a

constraint was not placed between the initial-state and final-state as was done be-

tween the start-y, end-y, and del ta-y for the ramp because del ta-y would always be either

1 or -1.

As in the an3log case, binary arrays are a condensed form of output storage. Points are

restricted to be (x,state) pairs.

(defwaveforui binary-array siniple
(pts))

Conversion between steady-state / transition waveforms and binary array waveforms is a

straightforward mapping. Boolean operations, bit-pattern searching, and other virtual logic-

an alyzer operations can be easily incorporated.

44

Chapter 5 Waveforms

5.3.3 Defining New Displays and New Waveform Types

Analog and binary display types are designed to cover most all the cases for the lower level

simulators. This listing is by no means exhaustive. For this reason, adding new waveform types

for these display types is a simple procedure. Infinite as well as periodic waveform definitions

could also be added. From the basic set of simple? wavelorm types defined above, a library of

compound, hierarchical waveform types can be defined. New waveform displays may also be

created. A qualitative [Williams 84] display for example could be built on top of the analog display

type, incorporating the display procedures currently available in the S-mulation Environment.

Non-linear and multi-dimensional display axes and g! aphics routines could be integrated.

At higher levels of signal abstraction, waveform axes are, no longcr of any use. Waveform

displays amount to program descriptions, flow graphs, state diagrams, and the like. Instead of

viewing individual binary signals for example, a collection of signals numerically represented in

base 8 or 16 would provide the greatest amount of flexibility. Octal and hexadecimal waveform

types would most likely exist where collections of up to 8 and 16 binary display objects, respec-

tively, could be directly mapped.

5.4 Mixed-Mode Capability

In order to perform mixed mode simulation, where the output results of one simulation are

used as the input in some other simulation, a waveform conversion may be necessary. Simple

handlers transform waveforms from one type to another on demand. (,onversion techniques

among waveforms occupying analog display objects and binary display oLjects have been briefly

discussed. Conversion between analog and binary waveforms is of greater interest for the provid-

ing the mixed.mode capability of the Simulation Environment. In general, conversions from the

more accurate waveforms to a higher level of abstraction is straightforwafd. Mapping a voltage

waveform onto a binary waveform requires an understanding of the threrhold voltages and cur-

rents for the different logic states in the chosen technology. In the opposite direction, techniques

are available and are documented in the literature [Arnout 78, Antognetti 8 t1. All coercions could

be easily implemented and integrated with little knowledge of the internal workings of the sur-

rounding Simulation Environment.

45

Chapter 5 Waveforms

5.5 Summary

The uniform representations of waveforms, waveform displays, and waveform folders

naturally conform to the hierarchy of Schema. Waveform displays provide a uniform interface to

the user. Display types and their associated waveform types are designed to satisfy the input and

output requirements of simulators. Parameters associated with input waveform tie directly into

the constraint network of Schema; output wavelorm types conserve on memory storage space.

New waveform types and operations as well as display types can be easily integrated. Local

coercion routines can be defined to simply transform one type of waveform to another; this gives

the Simulation Environment the capability to perform mixed-mode simulation.

46

Chapter Six

Generic Simulator

This chapter explores the Generic Simu/ition Process: a series of steps leading to a single

simulation with the Generic Simulator. As the process unfolds. the discussion centers on how the

Generic Simulator coordinates the flow of data objects between the simulation initiator, the user

or analysis tool, and the selected simulator.

6.1 Uniform User Interface

During the Presentation Editing Mode, the user graphically draws a schematic or layout of a

circuit design. Then the user enters Simulatioii Mode. The display is reconfigured to provide

both a waveform editor and a read-only presentation viewer. The Generic Simulator requests the

presentation to create or update the module definition. During this time, a correspondence is set

up between the presentation and the module definition. The read-only Oresentation viewer can

then serve as the user's interface to the electrical information in the module definition. At this

point, only the top-level submodules of the module definition and their interconnections cor-

respond to the flat presentation. The user may at any time access the internal parts of a sub-

module via the zoom-in feature described in Chapter 3. Using the wavet.-rm editor, the user may

graphically enter new waveform displays as well as view the waveform displays of any currently

existing waveform folders. For example, the user may wish to use a waveform folder containing

input test vwctors and output specification waveforms for an aod or memory-write operation. The

combination of both the presentation viewer and waveforn editor enatbles the user to assign

waveforms to the input nodes and pins of the module defirition. After input waveform assign-

ments, the user may begin the Generic Simulation Process.

47

Chapter 6 Generic Simulator

6.2 Initiation Phase

To begin a Generic Simulation Process, the initiator first selects a region or all of a module

definition upon which to perform the simulation. Next a specific simulator is chosen from the

available simulators within the Generic Simulator. Simulator selection specifies the set of ap-

propriate module, model, and waveform types handled by the simulator.

Because some simulators perform more than one type of analysis, an analysis context must

also be specified by the initiator. Traditional circuit simulators for example perform dc, ac small-

signal, and transient analyses. If more than one analysis type exists for any chosen simulation,

analysis context selection may further restrict the appropriate module, model, and waveform

types. For example, a dc analysis context greatly simplifies a capacitor or inductor model. Under

different analysis contexts, a different kind of signal may be necessary; a dc analysis produces

voltage and current values, whereas a transient analysis generates a history of (time, value) pairs.

The Generic Simulator may request additional information from the initiator. In the case of

a transient analysis for example, initial time, time step size, final time, and number of simulation

steps are required information. For an internal simulation, the initiator has the opportunity to

control simulation execution, e.g., to halt when certain waveforms fail to meet output specifica-

tions, or to supervise some combination of output waveforms such as effective capacitance.

6.3 Initialization Phase

Once a simu!ation has been initiated, the Generic Simulator initializes as much information

for the sim.lation as possible. This includes locating the appropriate modules, waveforms,

models, and the relationship between them. The Generic Simulator passes type-dependent tasks

orito each object. All initialization is completely transparent to the initiator. The following sec-

tions describe the Generic Simulator's role in the preparation the unilorm data objects in the

Simulation Environment for simulation execution. This constitutes the laitiauization Phase of the

Generic Simulation Process.

48

' =.= == === == == " = =
=Ir mlll = " = " = II ~ll l= l m

M EN I

I.I

Chapter 6 Generic Simulator

6.3.1 Locating Appropriate Modules

The Generic Simulator locates the appropriate modules for the selected simulator by re-

questing this information from the module definition. The module definition asks all of its sub-

modules in the selected region to return the modules to be simulated. If a submodule is an

appropriate module type, it just returns itself to the Generic Simulator. If the submodule is not

appropriate and is a compound module type, it creates its submodules and their interconnections
. if not already created from some other simulation -and forwards the request onto its sub-

modules. If a simple module type is encountered which is not appropriate, an error is signaled;

the initiator is then notified that the selected simulator is unable to simulate this particular module

type. The recursive process continues until all appropriate modules in the selected region are

located. In this way, the responsibility for finding the appropriate modules is passed from the

Generic Simulator, to the module definition, and onto each submodule.

As an aside, notice that the entire submodule hierarchy need not be fully generated.

Submodule creation is required only down to the appropriate modules in the selected region.

This results in considerable time and memory savings - especially when simulating very large

circuits at higher levels of abstraction. Even though the circuit may be hierarchically defined

down to the detailed transistor level, the existence of the lower level objects is unnecessary for

the simulation at hand. For example, consider performing a register transfer level simulation of a

microprocessor chip. where a programmable logic array PLA is one rrajor component. The

module definition of the PLA may have been separately defined and testd at the detailed tran-

sistor level, where simulation results were summarized into a more abstra(t logic level model. For

a logic level simulation of the microprocessor chip, valuable memory space is conserved by not

creating the internal transistor structure of the PLA submodule. Creation on demand inhibits

submodule gener.tion unless absclutely necessary.

6.3.2 Interconnection of Appropriate Modules

Once the appropriate modules have been located, the Generic Simulator determines the

intcrconnections for the selected simulator. Because module.; in the Simulation Environment are

hierarchical, the pins of appropriate modules are indirectly connected to other appropriate

modules via the nodes and pins along the hierarchy. Unfortunately most simulators do not handle

hierarchically interconnected modules. To solve this problem, the pins of appropriate modules

are directly intercolnected through a common simulation node. Conversely, each pin of an

49

Chapter 6 Generic Simulator

appropriate module connects to a simulation node. In this way, the Generic Simulator, and thus

the selected simulator, may view the circuit as a flat structure of interconnected modules.

6.3.3 Locating Appropriate Waveforms

Input waveforms -assigned by the initiator must be of the appropriate signal type for the

simulator, and if not, must be transformed into the correct signal type. The Generic Simulator

asks each top-level input node or pin of the hierarchical modules in the selected region to return a

waveform of the appropriate type for the simulator. Each node or pin forwards the operation onto

the attached waveform. If the waveform is not of the correct type, the waveform calls a transfor-

mation operation on itself, which returns an appropriate waveform to the Generic Simulator. If the

waveform undergoes a type conversion, the transformed waveform is cached on the node or pin

from whence in came; now both the original waveform and is transformed counterpart are avail-

able on the hierarchical module definition. This avoids unnecessarily repeating the transfor-

mation procedure in future simulations.

6.3.4 Attaching Appropriate Waveforms

6.3.4.1 Irput Waveforms

The initiator attaches input waveforms to nodes and pins of the hierarchical module defini-

tion. Yet the Generic Simulator associates appropriate waveforms with the flat structure of inter-

connected modules. When an appropriate waveform is returned from a hierarchical node of the

module definition the Generic Simulator attaches it to a corresponding simulation node. Voltage,

binary, symbolic and other abstract waveforms are associated with simulation nodes. Some

simulators however also associate waveforms with pins. Circuit level simulators for example

commonly employ current waveforms. In this case the Generic Simulator creates a new set of

simulation pins corresponding to the pins in the selected region of the module definition that were

assigned input waveforms. These new simulation pins are different from the pin. in the hierar-

chical module definition because they are directly connected to the flat simulation nodes. The

Generic Simulator then attaches appropriate waveforms to these simulation pins.

50

Chapter 6 Generic Simulator

6.3.4.2 Output Waveforms

Output waveforms are placed on the simulation nodes. If output waveforms are also as-

sociated with pins, a set of output simulation pins are created for each module to be simulated.

As with input pins, output pins are connected directed to the flat simulation nodes. If an internal

simulator has been invoked, the output waveform displays are generated and attached to their

respective nodes and pins during the initialization phase for pending availability to other Generic

Simulation Processes. They act as virtual waveforms and can be as3igned as input in other

internal simulations, i.e., for concurrent mixed-mode simulation. For external simulators, it is not

necessary to create the waveforms until simulation execution is complete. In the event of exten-

sive or lengthy external simulation, creating the waveform displays ahead of time only adds long-

term objects to local memory, and needlessly increases memory paging.

The flat structure now contains the modules, their interconnections, and the input

waveforms required for the simulator. The appropriate modules and the input waveforms are the

exact same objects contained in the hierarchical module definition, yet the simulation nodes,

simulation pins and the output waveforms are newly created for each simulation performed.

Furthermore, simulation nodes and pins and their associated waveform data are stored

independently from the hierarchical module definition; no explicit pointers exist from the module

definition Zo the objects ini the flat structure. In this way, each simulation run is kept separate and

distinguishable from other simulations, and thus can be quickly and easily discarded, saved for

later use, o, compared against the results of oth!,' simulations. Because waveform output often

contains many data points, it is important to summarize the essential waveform data and to

discard or garbage collect the rest.

6.3.4.3 Mapping Waveforms onto Nodes

A mapping table is created relating the fiat simulation nodes and t;i electrically equivalent

nodes in the hierarchical circuit nodule. Interconnected nodes along the hierarchy correspond

to one simulation node, and one simulation node maps onto one or mote electrically equiwlent

nodes of the hierarchical module definition, as shown in Figure 6- 1. This mapping allows the user

and the analysis tools access to the waveform data from the hierarchical module definition, and

vice versa. The user, for example, may probe a wire of the graphical presentation for a wavoform.

The wire forwards the message onto its topological correspondent, a node in the module defini-

tion. The mapping table is consuited for the equivalent simulation node. Once found, the simula-

tion node then returns tile waveform. In the reverse direction, waveforms can now find wires of

51

Chapter 6 Generic Simulator

the presentation for which they are associated. Suppose the user is viewing a waveform and

wishes to know the wires in the presentation for which a particular waveform applies. The

waveform forwards the operatien onto its simulation node. Next the mapping table is consulted

for the set of electricaly equivalent nodes in the hierarchical module definition. With the

knowledge of the user's current presentation, a single node is selected. And finally this node

requests each of its presentation correspondents, graphical wires, to display themselves to the

user.

hlerarchical

module-- ------------

definition r - - - - 1

0" I M I / / I o!

A , I ._d _

• e i

eqialn no0- ofa iracica m .oduleon

/

6.3..4 Mppin Wavform . in

"" I "/

a s mul d t io

Anode

Fi ure 6- 1 : Mapping of a single simulation node onto electically
equivalent nodes of a hierarchical module definition.

6.3.4.4 Mapping Waveforms onto Pins

If waveforms3 are associated with pins, a mapping table for pins is also useful, in this case, a

0 1e to-one mappin]g. An iinput pin of the hierarchical module definition maps directly onto one

simnulaitioni pin. Output waveforrns attached to simlation pins can map onto the pins of the

aopropriate m'odules. In contrast to nodes, pins alonlg the hierarchy and their associated currents

are not electrically equivalent; pins of hierarchical modules will not have a waveform initially- nor

an entry in the mapping table, unless the pin is queried for one.

52

Chapter 6 Generic Simulator

Suppose the initiator probes for an output current waveform of a module's pin. The pin

then consults the mapping table for its corresponding simulation pin containing the waveform. If
the module is an appropriate module, an output current waveform is returned. If not, a current
waveform must be created for the pin, as shown in Figure 6-2, where a simple application of
Kirchoff's current law produces the desired waveform. The current waveform of the hierarchical

module's pin is actually the sum of the currents attached to the pins of the interconnected ap-
propriate modules inside (or outside). The procedure is performed as follows. First the hierar-

chical pin finds all the waveforms internal to its parent module by requesting a current waveform
from all internal pins connected to its internal node. If these pins cannot locate a waveform in the
mapping table, the request is again forwarded. This recursive process continues until all internal
currents have been found. The hierarchical pin then performs a generic add operation on the
waveforms returned. This newly generated waveform is then assigned a simulation node and

cached in the mapping table for future reference. Generating waveforms only upon inquiry is
again part of Schema's creation on demand technique.

6.3.5 Locating Appropriate Models

The Generic Simulator locates an appropriate model, if any, for each appropriate module

taking part in the simulation. The model may be found in one of two places. It may already exist
within the module itself, cached from a previous simulation, or it may be found in the designer's

environment folder. In the latter case, if the appropriate model is of typo, model without state, the
model itself is cached. If the appropriate model is of type, model with state, a copy of th, model is

croated and cached in the module.

The location procedure occurs as follows. rhe Generic Simulator simply asks each ap-
propriate module to find a model for the simulator selected under the current analysis context.
The module then looks to see if any of its cached models are appropriate, if not, the designer's

environment folder is passed the respon,;ibility. Next the environment folder searches through its
subparts for a model folder with the correct module type. I not found, each subenvironment is

searched, and so on in a breadth first manner4 . Once found, the model folder is asked to locate
an appropriate model. It then searches its models while asking each if it is appropriate. In effect,

the responsibility for finding an appropriate model is passed naturally from the Generic Simulator,

4 This is not currently the case, only one level of the environment folder hierarchy is searched.

53

Chapter 6 Generic Simulator

current-I - current-sum
A A

V V newO s3miltion 1' 0ioulat ion

A ppin
A 1

- -- - - - hierarchical
II /

appropriate module

modul e -

- -
appropr ate

-I- -- - - odl

appropriate

module

- A appropriate

hidueracia oe

SShtnul dt ion

A pin-2

current-2

Figu re 6- 2: Summing current waveforms, cut ront- I and :.;rrent-2,
to produce current-sum for pin of a hierarchical modle.

to the module, to the environment folder, to the model folder, and finally onto the model. If the

appropriate model is found, either the model or a copy of tile niodel is returned back to the

module, and cached for use in future simulations. The Generic Simulator need never knowi anything about the models.

Durin. the course of simulation initialization, the Generic Simulator notifies the initiator of

any inconsistencies, undefined quantities, or ambiguities in the information gathered by the

Generic Simulator thus far. Simulation execution cannot proceed until all required inforrration is

supplied. The simulation initiator may need to subsequently add or modify waveforms, models, or

54

Chapter 6 Generic Simulator

parameter values. At the close of the Initialization Phase, data associated with the simulation is

locked from modification; all objects however are read-accessible to other processes, including

other Generic Simulation Processes.

6.4 Execution Phase

The Generic Simulator handles two basic types of simulators, internal and external. An

Internal Simulator directly manipulates the data objects present within the address space of the

Simulation Environment. Simulation execution may be interactively controlled. An external

simulator generates its own internal data structures in a separate address space. The following

sections briefly describe each simulation process and the role of the Generic Simulator in the

execution phase.

6.4.1 Internal Simulation

Because an internal simulator accesses the data objects directly, the Generic Simulator

need only call the simulation routine and pass it the flat module structure to be simulated. The

simulator then forwards many of the type-dependent tasks ontu the data objects. In a Spice-like

circuit-level simulator, each module and input waveform calculates its fill-in values for the sparse

modified-nodal-analysis matrix. Each module's model is responsible for performing calculations

based on its model, parameters, and some local state. Input waveforms compute a voltage or

current value for a given timepoint. At higher levels of simulation, the simulator dynamically

schedules the sequence of operations, or events, as signal value- propagate through the circuit.

This time the model computes an output waveform value, given some input waveform values. The

simulator propagates the calculated output to the input of interconnected modules by way of the

flat simulation nodes.

At each time step of execution, input waveforms are sampled, outp'Jt values are produced

and sent directly to the output waveform display objects. Simulation execution can be inter-

actively controlled by the simulation initiator. The user for example can visually observe the

cutput waveforms as the simulation proceeds, and may halt execution in the event of erratic

circuit behavior. An analysis tool could dynamically discontirue execution at the moment the

resulting waveforms fail to meet design specifications. Not only may the output waveforms them-

selves be observed, but any combination of operations on these waveforms may also be ob-

55

Chapter 6 Generic Simulator

served, e.g., power consumption. Furthermore, with the waveform transformation capability of

the Simulation Environment, concurrent mixed.mode simulation is also possible. As output

waveforms of one region's simulation becomes available, they could be automatically used as

input to some other region's simulation.

6.4.2 External Simulation

An external simulation is performed in a separate address space. In the event the simulator

exists on a remote processor(s), the Generic Simulator first establishes a connection to the

simulation server, typically via a local network. Because more than one remote processor may

run the selected simulator, the Generic Simulator polls each of the existing processors to deter-

mine the best available resource. Spice2, for example, is highly portable and thus runs on many

different servers. Yet at any point in time, some servers may be fully-loaded with performing

simulations or some other computationally intensive task. The least-loaded, most efficient

machine should be prompted to service the simulation request.

Next the Generic Simulator requests a textual description from all data objects to be simu-

lated. Each appropriate module, waveform, model and parameter object then returns a textual

description to be forwarded by the Generic Simulator to the selected simulator. Simulation may

then proceed in a background process. During the course of execution, other activities or

processes occurring within the Simulation Environment may continue uninterruptcd. Upon

completion, some textual output is returned. Generic simulator sends the data to an output

parsing routine which interprets the output results and creates the uniform waveform data objects

in the Simulation Environment. And finally, the simulation initiator is notifi.d of execution comple-

tion.

6.5 Completion Phase

During the Completion Phase, output waveforms are available ;or inspection, analysis, and

as input to other Generic Simulation Processes. The waveforms are accessible to the initiator via

the module definition. In the case of the user, the interface to waveforms attached to the module

definition is by way of the presentation viewer in combination with the waveform editor.

Convenient analysis tools summarize waveform data for example, not only for graphical display

and reduced storage, but also into a new model for use in a higher level simulations as described

in Chapter 7.
56

Chapter 6 Generic Simulator

A Generic Simulation Process may be extended, in which case the same flat structure is

reused. The same waveform objects are just appended with additional output points. Output

waveforms are collected together into an output waveform folder. Because simulation results are

dependent on the models used in the simulation, they are stored with the models in the user's

environment folder.

6.6 Summary

The Generic Simulation Process is a series of steps leading to a single simulation on the

Generic Simulator. The process occurs as follows. First of all, waveforms are assigned to the

input terminals of a circuit module. The simulation initiator, either the user or analysis tool,

selects a specific simulator from among a rich variety. The Generic Simulator then prepares the

chosen region, the assigned waveforms, the appropriate models, and the module parameters for

the selected simulator. Next simulation is performed either directly on the data objects within the

Simulation Environment, or externally in a separate address space. Output waveforms are

created and made available for inspection, analysis, or as input to future simulations.

57

Chapter Seven

Discussion

7.1 Summary

The Simulation Environment provides a uniform CAD interface, a single user interface, and

mixed-mode capability by using a common representation for simulation data objects: topologies,

models, and waveforms. The data objects, a Generic Simulator, and the user interface together

make up the Simulation Environment as implemented in Schema.

The object types and corresponding operations defined in the Simulation Environment are

patterned after the requirements of the simulators that use them. The addition of new types of

objects and their operators facilitates easy extensibility to additional simulators. The object types

and the layer of operations defined in the Simulation Environment serve as the foundation upon

which to build new analysis tools. Local coercion routines can be defined to simply transform one

type of waveform to another; this gives the Simulation Environment the capability to perform

mixed-mode simulation.

The Generic Simulator coordinates the flow of objects between each simulator and the

simulation initiator, the user or analysis tool, during the Generic Simulatinn Process. Waveforms

are assigned to the input terminals oi a circuit module. The simulation initiator selects a specific

simulator from among a variety of simulators. The Generic Simulator then prepares the circuit

module, the assigned waveforms, the appropriate models, and the module parameters for the

selected simulator. Next simulation is performed and finally output waveforms are created and

made available for inspection, analysis, or as input to future simulaticns.

7.2 Implementation: The Simulation Environment Layer

The Simulation Environment is implemented in Schema using Symbolics 3600-family lisp

machines. All types are built on top of the Flavor System [Reference 85] provided by the Zetalisp

language. The object-oriented programming strategy established by the flavor system provides

the base layer upon which Schema is established.

58

Chapter 7 Discussion

Many of the basic iopology, model, and waveform data types and operations have already

been defined for the Simulation Environment in Schema. New types and operations are con-

tinually being added and refined to conform to the needs of additional tools built into the system.

It is hoped that this define-and-refine process will at some point converge to an optimum general

representation for data objects, where these representations form a solid layer upon which to

build other CAD tools for all areas of circuit design.

Currently two simulators have been implemented in the Simulation Environment; an internal

transient simulator and the external circuit-level simulator Spice2. The internal simulator employs

the forward-euler method of integrating current into each capacitive node of a circuit. This

simulator daes not have the accuracy of the detailed circuit analysis simuiator, but does have the

advantage of being much faster and highly interactive. Thus the designer is able to make initial

verification and performance estimates using the interactive internal simulator and save the

detailed analysis for the remote simulation engine. Both make use analog waveforms.

The next step is the addition of the linear, switch, and logic-level simulators that use the

binary waveforms already defined in the Simulation Environment. For mixed-mode operation,

coercion routines between analog and binary waveforms must also be defined. These simulators,

together with the currently embedded transient simulators, constitute an essential layer of tools

upon which to integrate higher-level simulators.

7.3 Future Work: The Concurrent Mixed-Mode Simulation
Layer

Because errors may be introduced into simulation results by an unfortunate choice of

simulator at a critical point in the circuit, expert or automatic partitioningj routines could be in-

dependently developed and placed on top of the Simulation Environment. The routines would

essentially divide large scale circuit modules into collections of submodules to be simulated at

different levels of abstraction. Critical paths and tightly-coupled subcircuits are grouped and

simulated at a detailed level, while less critical circuits are simulated more abstractly.

Concurrent mixed-mode internal simulation is now possible. The Simulation Environment

provides the foundation layer of simulators, a Generic Simulator, and uniform representations.

On top of this are three essentially independent layers. One provides the signal transformation

59

procedures for mixed-mode operation, another contains the different internal simulators and

general simulation algorithms, and finally the third embodies the expert partitioner. These provide

the base upon which to build a concurrent mixed-mode simulator. As waveform values of one

subcircuit's simulation become available, they could be used immediately as input to an intercon-

nected module's simulation.

As cited in Chapter 1, the main bottleneck with such a single-system approach is the limited

computational power. In Schema, the data objects exist in a common address space with the

potential for multiple processes. Circuit partitioning conveniently lends itself to parallel process-

ing and could thus spawn off new processes when necessary. Unfortunately however only one

processor is currently available. In the future, these processes may be mapped onto more power-

ful parallel, multi-processor systems. In the meantime, the Simulation Environment provides the

foundation upon which to develop these more sophisticated software layers.

7.4 Conclusion

This thesis has two main conclusions. First, designing the layer of general representations

is the most difficult task in developing the Simulation Environment. Second, once the general

representaticns have been designed for a specific simulation level, it is easy to integrate ad-

ditional simulators at that same level. In general, as each new simulation leve is incorporated into

the environment, the representations undergo a continual define-and- refine process. As a con-

sequence, the representations eventually evolve into the most general form satisfying the needs

of a compr.hensive range of simulators and the needs of the user.

60

References

[Abelson 85] Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer
Programs, The MIT Press, 1985.

[Abramovici 83] Abramovici, M., Levendel, Y. H. and Menon, P. R., "A Logic Simulation
Machine," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems CAD-2(2):82-94, April 1983.

[Antognetti 84] Antognetti, P., Pederson, D. 0. and de Man, H. (Eds.), Computer Design Aids for
VLSI, Martinus Nijhoff, 1984.

[Arnold 85] Arnold, J. M., "Parallel Simulation of Digital LSI Circuits," Technical Report 333,
Massachusetts Institute of Technology, February 1985.

[Arnout 78] Arnout, G. and de Man, H., "The Use of Threshold Functions and Boolean-
Controlled Network Elements for Macromodelling of LSI Circuits," IEEE Journal of Solid-
State Circuits SC- 13(6):326-332, June 1978.

[Borrione 831 Borrione, D., Humbert M., Le Faou, C., "Hierarchical Mixed-Mode Simulation
Mechanisms in the CASCADE Project," Anceau, F. and Aas E. J. (Ed.), VLSI '83, Elsevier
Science Publishers B. V., August 16-19 1983, pp. 119-129.

[Bryant 81] Bryant, R. E., "A Switch-Level Simulation Model for Integrated Logic Circuits," Ph.D.
Thesis, Massachusetts Institute of Technology, March 1981.

[Chawla 75] Chawla, B. R., Gummel, H. K. and Kozak, P., "MOTIS -- An MOS Timing Simulator,"
IEEE Transactions on C, -uits and Systems CAS-22(12):901-909, December 1975.

[Chen 84] Chen, C. F., Lo, C., Nham, 11. N. and Subramaniam, P., "The Second Genearation
MOTIS Mixed-Mode Simulator," Proceedings of the 21st Design Automation Conference,
ACM IEEE, June 25-27 1984, pp. 10-17.

[Cohen 761 Cohen, E., "Program Reference for SPICE2," ERL Memo ERL-M592, University of
California, Berkeley, June 1976.

[Daniel 82] Daniel, M. E. and Gwyn, C. W., "CAD Systems for IC Design," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems CA D- 1 (1):2-12, January 1982.

[Deutsch 84] Deutsch, J. T. and Newton, A. R., "A Multiprocessor Implementation of Relaxation
Based Electrical Circuit Simulation," Proceedings of the 21st Design Automation
Conference, ACM IEEE, June 25-27 1984, pp. 350-357.

[Doshi 84] Doshi, M. H., Sullivan, R. B. and Schuler, D. M., "THEMIS Logic Simulator A Mix

Mode, Multi-Level, Hierarchical, Interactive Digital Circuit Simulator," Proceedings of the
2 1st Design Automation Conference, ACM IEEE, June 25.27 1984, pp. 24-31.

431

References

[Dumlugol 831 Domlugol, D., de Man, H. J., Stevens, P. and Schrooten, G. G., "Local Relaxation
Algorithms for Event-Driven Simulation of MOS Networks Including Assignable Delay
Modeling," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems CAD-2(3):193-202, July 1983.

[Fan 77] Fan, S. P., Hsueh, M. Y., Newton, A. R. and Pederson, D. 0., "MOTIS-C: A New Circuit
Simulator for MOS LSI Circuits," Proceedings of the IEEE International Symposium on
Circuits and Systems, IEEE, April 1977, pp. 700-703.

[Hafer 83] Hafer, L. J. and Parker, A. C., "A Formal Method for the Specification, Analysis, and
Design of Register-Transfer Level Digital Logic," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-2(1):4-18, Januar/ 1983.

[Hill 79] Hill, D. D. and vanCleemput, W. M., "SABLE: A Tool for Generating Structured, Multi-
Level Sinulations," Proceedings of the 16th Design Automation Conference, ACM IEEE,
June 25-27 1979, pp. 272-279.

[Hill 801 Hill, D. D. and vanCleemput, W. M., "SABLE: Multi-Level Simulation for Hierarchical
Design," Proceedings of the IEEE International Symposium on Circuits and Systems,
IEEE, April 1980, pp. 431-434.

[Lanthrop 85] Lanthrop, R. H. and Kirk, R. S., "An Extensible Ohject-Oriented Mixed-Mode
Functional Simulation System," Proceedings of the 22nd Design Automation Conference,
ACM IEEE, June 1985, pp. 630-636.

[Lewke 83] Lewke, K. and Rammig, F. J., "Description and Simulation of MOS Devices in
Register Transfer Languages," Anceau, F. and Aas E. J. (Ed.), VLSI '83, Elsevier Science
Publishers B. V., August 16-19 1983, pp. 73 83.

[Nagel 75] Nagel, L. W., "SPICE2: A Computer Program to Simulate Semiconductor Circuits,"
ERL Memo ERL-.M520, University of California, Berkeley, May 1975.

[Nestor 82] Nestor, J. A. and Thomas, D. E., "Defining and Implemeiting a Multilevel Design

Representation with Simulation Applications," Proceediogs of the 19th Design Automation
Conference, ACM IEEE, June 14-16 1982, pp. 740-746.

[Newton 78J Newton, A. R., "The Simulation of LargeScale Integrated Circuits," ERL Memo

ERL-M78/52, University of California, Berkeley. July 1978.

[Newton 79] Newton, A. R., "Techniques for the Simulation of Large Sc.le Integrated Circuits,"
IEEE rrarisactions on Circui. ,nd S'stemns CAS-26(o) 741 749. September 19/9.

[Newton 841 Newton, A. R. and S;,ngiovanni Vincentelli, A L .r ,l;,xation Based Electrical
Simulation," IFEE Transactions on Coollnitc'f Aqteul f)tNs:,j (,i ,ntegrated Circuits and
Systems CAD-3(4):308 331, October 1984.

[Pfister 82] Pfister, G. F.. "The Yorktown Simnulation Frigine." PrO ,,,'h1ngs of the 19th Design

Automation Conference, ACM IEEE, June 14 16 Ii62. pp " 55 9

[Reference 85j Reference Guide to Symbolics I isp. 1985

[Solden 86] Solden, S., "Waveforms as First.Class Objlcts in Schemr." May 1986. Bachelor of

Science Thesis.

62

References

[Terman 83] Terman, C. J., "Simulation Tools for Digital LSI Design," Ph.D. Thesis,
Massachusetts Institute of Technology, September 1983.

[Thomas 831 Thomas, D. E. and Nestor, J. A., "Defining and Implementing a Multilevel Design
Representation with Simulation Applications," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-2(3):135-145, July 1983.

[Weeks 73] Weeks, W., et al, "Algorithms for ASTAP -- A Network Anallsis Program," IEEE
Transactions on Circuit Theory CT-20(6):628-634, November 1973.

[Williams 84] Williams, B. C., "Qualitative Analysis of MOS Circuits," Technical Report 767,
Massachusetts Institute of Technology, July 1984.

[Zippel 85] Zippel, R. E. and Clark, G. C., "Schema - An Architecture for Knowledge Based
CAD," Intarnational Conference on Computer-Aided Design, IEEE, November 1985, pp.
50-52.

63

OFFICIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlinaton, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washinztcn, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Conputino Activities
1800 C. Street, N..
hashw:%ton, DC 20550
Attn: Procrar Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Veapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

LED

